Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Surg Open Sci ; 16: 37-43, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37766798

RESUMO

Background: High quality surgical care for colorectal cancer (CRC) includes obtaining a negative surgical margin. The Michigan Surgical Quality Collaborative (MSQC) is a statewide consortium of hospitals dedicated to quality improvement; a subset of MSQC hospitals abstract quality of care measures for CRC surgery, including positive margin rate. The purpose of this study was to determine whether positive margin rates vary significantly by hospital, and whether positive margin rates should be a target for quality improvement. Methods: We performed a retrospective cohort study of patients who underwent CRC resection from 2016 to 2020. The primary outcome was the presence of a positive margin. Univariate and multivariable analyses were performed to test the association of positive margins with patient, hospital, and tumor characteristics. Results: The cohort consisted of 4211 patients from 42 hospitals (85 % colon cancer and 15 % rectal cancer). The crude positive margin rate was 6.15 % (95 % CI 4.6-7.4 %); this ranged from 0 % to 22 % at individual hospitals. In multivariable analysis, factors independently associated with positive margins included male sex, underweight BMI, metastatic cancer, rectal cancer (vs. colon), T4 T-stage, N1c/N2 N-stage, and open surgical approach. After adjusting for these factors, there remained significant variation by hospital, with 8 hospitals being statistically-significant outliers. Conclusions: Positive margins rates for CRC vary by hospital in Michigan, even after rigorous adjustment for case-mix. Furthermore, several hospitals achieved near-zero positive margin rates, suggesting opportunities for quality improvement through the identification of best practices among CRC surgery centers.

2.
J Nucl Med ; 64(7): 1017-1023, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36997331

RESUMO

Primary liver cancer is the third leading cause of cancer-related deaths, and its incidence and mortality are increasing worldwide. Hepatocellular carcinoma (HCC) accounts for 80% of primary liver cancer cases. Glypican-3 (GPC3) is a heparan sulfate proteoglycan that histopathologically defines HCC and represents an attractive tumor-selective marker for radiopharmaceutical imaging and therapy for this disease. Single-domain antibodies are a promising scaffold for imaging because of their favorable pharmacokinetic properties, good tumor penetration, and renal clearance. Although conventional lysine-directed bioconjugation can be used to yield conjugates for radiolabeling full-length antibodies, this stochastic approach risks negatively affecting target binding of the smaller single-domain antibodies. To address this challenge, site-specific approaches have been explored. Here, we used conventional and sortase-based site-specific conjugation methods to engineer GPC3-specific human single-domain antibody (HN3) PET probes. Methods: Bifunctional deferoxamine (DFO) isothiocyanate was used to synthesize native HN3 (nHN3)-DFO. Site-specifically modified HN3 (ssHN3)-DFO was engineered using sortase-mediated conjugation of triglycine-DFO chelator and HN3 containing an LPETG C-terminal tag. Both conjugates were radiolabeled with 89Zr, and their binding affinity in vitro and target engagement of GPC3-positive (GPC3+) tumors in vivo were determined. Results: Both 89Zr-ssHN3 and 89Zr-nHN3 displayed nanomolar affinity for GPC3 in vitro. Biodistribution and PET/CT image analysis in mice bearing isogenic A431 and A431-GPC3+ xenografts, as well as in HepG2 liver cancer xenografts, showed that both conjugates specifically identify GPC3+ tumors. 89Zr-ssHN3 exhibited more favorable biodistribution and pharmacokinetic properties, including higher tumor uptake and lower liver accumulation. Comparative PET/CT studies on mice imaged with both 18F-FDG and 89Zr-ssHN3 showed more consistent tumor accumulation for the single-domain antibody conjugate, further establishing its potential for PET imaging. Conclusion: 89Zr-ssHN3 showed clear advantages in tumor uptake and tumor-to-liver signal ratio over the conventionally modified 89Zr-nHN3 in xenograft models. Our results establish the potential of HN3-based single-domain antibody probes for GPC3-directed PET imaging of liver cancers.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Anticorpos de Domínio Único , Humanos , Animais , Camundongos , Neoplasias Hepáticas/diagnóstico por imagem , Carcinoma Hepatocelular/diagnóstico por imagem , Radioisótopos/química , Glipicanas/química , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Anticorpos Monoclonais/química , Distribuição Tecidual , Linhagem Celular Tumoral , Tomografia por Emissão de Pósitrons/métodos , Zircônio/química
3.
J Nucl Med ; 64(4): 549-554, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36396453

RESUMO

Neuroendocrine tumors (NETs) express somatostatin receptors (SSTRs) 2 and 5. Modified variants of somatostatin, the cognate ligand for SSTR2 and SSTR5, are used in treatment for metastatic and locoregional disease. Peptide receptor radionuclide therapy with 177Lu-DOTATATE (DOTA-octreotate), a ß-particle-emitting somatostatin derivative, has demonstrated survival benefit in patients with SSTR-positive NETs. Despite excellent results, a subset of patients has tumors that are resistant to treatment, and alternative agents are needed. Targeted α-particle therapy has been shown to kill tumors that are resistant to targeted ß-particle therapy, suggesting that targeted α-particle therapy may offer a promising treatment option for patients with 177Lu-DOTATATE-resistant disease. Although DOTATATE can chelate the clinically relevant α-particle-emitting radionuclide 225Ac, the labeling reaction requires high temperatures, and the resulting radioconjugate has suboptimal stability. Methods: We designed and synthesized MACROPATATE (MACROPA-octreotate), a novel radioconjugate capable of chelating 225Ac at room temperature, and assessed its in vitro and in vivo performance. Results: MACROPATATE demonstrated comparable affinity to DOTATATE (dissociation constant, 21 nM) in U2-OS-SSTR2, a SSTR2-positive transfected cell line. 225Ac-MACROPATATE demonstrated superior serum stability at 37°C over time compared with 225Ac-DOTATATE. Biodistribution studies demonstrated higher tumor uptake of 225Ac-MACROPATATE than of 225Ac-DOTATATE in mice engrafted with subcutaneous H69 NETs. Therapy studies showed that 225Ac-MACROPATATE exhibits significant antitumor and survival benefit compared with saline control in mice engrafted with SSTR-positive tumors. However, the increased accumulation of 225Ac-MACROPATATE in liver and kidneys and subsequent toxicity to these organs decreased its therapeutic index compared with 225Ac-DOTATATE. Conclusion: 225Ac-MACROPATATE and 225Ac-DOTATATE exhibit favorable therapeutic efficacy in animal models. Because of elevated liver and kidney accumulation and lower administered activity for dose-limiting toxicity of 225Ac-MACROPATATE, 225Ac-DOTATATE was deemed the superior agent for targeted α-particle peptide receptor radionuclide therapy.


Assuntos
Tumores Neuroendócrinos , Compostos Organometálicos , Camundongos , Animais , Octreotida , Tumores Neuroendócrinos/metabolismo , Compostos Organometálicos/uso terapêutico , Distribuição Tecidual , Somatostatina/metabolismo , Receptores de Somatostatina/metabolismo , Radioisótopos/uso terapêutico , Compostos Radiofarmacêuticos/uso terapêutico
4.
Chem Sci ; 12(10): 3733-3742, 2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-34163647

RESUMO

Targeted alpha therapy is an emerging strategy for the treatment of disseminated cancer. [223Ra]RaCl2 is the only clinically approved alpha particle-emitting drug, and it is used to treat castrate-resistant prostate cancer bone metastases, to which [223Ra]Ra2+ localizes. To specifically direct [223Ra]Ra2+ to non-osseous disease sites, chelation and conjugation to a cancer-targeting moiety is necessary. Although previous efforts to stably chelate [223Ra]Ra2+ for this purpose have had limited success, here we report a biologically stable radiocomplex with the 18-membered macrocyclic chelator macropa. Quantitative labeling of macropa with [223Ra]Ra2+ was accomplished within 5 min at room temperature with a radiolabeling efficiency of >95%, representing a significant advancement over conventional chelators such as DOTA and EDTA, which were unable to completely complex [223Ra]Ra2+ under these conditions. [223Ra][Ra(macropa)] was highly stable in human serum and exhibited dramatically reduced bone and spleen uptake in mice in comparison to bone-targeted [223Ra]RaCl2, signifying that [223Ra][Ra(macropa)] remains intact in vivo. Upon conjugation of macropa to a single amino acid ß-alanine as well as to the prostate-specific membrane antigen-targeting peptide DUPA, both constructs retained high affinity for 223Ra, complexing >95% of Ra2+ in solution. Furthermore, [223Ra][Ra(macropa-ß-alanine)] was rapidly cleared from mice and showed low 223Ra bone absorption, indicating that this conjugate is stable under biological conditions. Unexpectedly, this stability was lost upon conjugation of macropa to DUPA, which suggests a role of targeting vectors in complex stability in vivo for this system. Nonetheless, our successful demonstration of efficient radiolabeling of the ß-alanine conjugate with 223Ra and its subsequent stability in vivo establishes for the first time the possibility of delivering [223Ra]Ra2+ to metastases outside of the bone using functionalized chelators, marking a significant expansion of the therapeutic utility of this radiometal in the clinic.

5.
Molecules ; 26(1)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33374953

RESUMO

Glypican-3 (GPC3) is expressed in 75% of hepatocellular carcinoma (HCC), but not normal liver, making it a promising HCC therapeutic target. GC33 is a full-length humanized monoclonal IgG1 specific to GPC3 that can localize to HCC in vivo. GC33 alone failed to demonstrate therapeutic efficacy when evaluated in patients with HCC; however, we posit that cytotoxic functionalization of the antibody with therapeutic radionuclides, may be warranted. Alpha particles, which are emitted by radioisotopes such as Actinium-225 (Ac-225) exhibit high linear energy transfer and short pathlength that, when targeted to tumors, can effectively kill cancer and limit bystander cytotoxicity. Macropa, an 18-member heterocyclic crown ether, can stably chelate Ac-225 at room temperature. Here, we synthesized and evaluated the efficacy of [225Ac]Ac-Macropa-GC33 in mice engrafted with the GPC3-expressing human liver cancer cell line HepG2. Following a pilot dose-finding study, mice (n = 10 per group) were treated with (1) PBS, (2) mass-equivalent unmodified GC33, (3) 18.5 kBq [225Ac]Ac-Macropa-IgG1 (isotype control), (4) 9.25 kBq [225Ac]Ac-Macropa-GC33, and (5) 18.5 kBq [225Ac]Ac-Macropa-GC33. While significant toxicity was observed in all groups receiving radioconjugates, the 9.25 kBq [225Ac]Ac-Macropa-GC33 group demonstrated a modest survival advantage compared to PBS (p = 0.0012) and 18.5 kBq [225Ac]Ac-IgG1 (p = 0.0412). Hematological analysis demonstrated a marked, rapid reduction in white blood cells in all radioconjugate-treated groups compared to the PBS and unmodified GC33 control groups. Our studies highlight a significant disadvantage of using directly-labeled biomolecules with long blood circulation times for TAT. Strategies to mitigate such treatment toxicity include dose fractionation, pretargeting, and using smaller targeting ligands.


Assuntos
Partículas alfa , Carcinoma Hepatocelular/metabolismo , Glipicanas/metabolismo , Neoplasias Hepáticas/metabolismo , Actínio/uso terapêutico , Partículas alfa/uso terapêutico , Animais , Anticorpos Monoclonais Humanizados/administração & dosagem , Antineoplásicos Imunológicos/administração & dosagem , Antineoplásicos Imunológicos/farmacocinética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/radioterapia , Glipicanas/genética , Humanos , Rim/metabolismo , Fígado/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Camundongos , Terapia de Alvo Molecular , Distribuição Tecidual
6.
Theranostics ; 10(1): 151-165, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31903112

RESUMO

Background: Pancreatic ductal adenocarcinoma (PDAC) has limited standard of care therapeutic options. While initially received with enthusiasm, results from targeted therapy with small molecule tyrosine kinases inhibitors (TKIs) have been mixed, in part due to poor patient selection and compensatory changes in signaling networks upon blockade of one or more kinase of tumors. Here, we demonstrate that in PDACs otherwise resistant to rational kinase inhibition, Met-directed immuno-positron emission tomography (immunoPET) can identify targets for cell-signaling independent targeted radioligand therapy (RLT). In this study, we use Met-directed immunoPET and RLT in models of human pancreatic cancer that are resistant to Met- and MEK-selective TKIs, despite over-expression of Met and KRAS-pathway activation. Methods: We assessed cell membrane Met levels in human patient samples and pancreatic ductal adenocarcinoma (PDAC) cell lines (BxPC3, Capan2, Suit2, and MIA PaCa-2) using immunofluorescence, flow cytometry and cell-surface biotinylation assays. To determine whether Met expression levels correlate with sensitivity to Met inhibition by tyrosine kinase inhibitors (TKIs), we performed cell viability studies. A Met-directed imaging agent was engineered by labeling Met-specific onartuzumab with zirconium-89 (Zr-89) and its in vivo performance was evaluated in subcutaneous and orthotopic PDAC xenograft models. To assess whether the immunoPET agent would predict for targeted RLT response, onartuzumab was then labeled with lutetium (Lu-177) as the therapeutic radionuclide to generate our [177Lu]Lu-DTPA-onartuzumab RLT agent. [177Lu]Lu-DTPA-onartuzumab was administered at 9.25MBq (250µCi)/20µg in three fractions separated by three days in mice subcutaneously engrafted with BxPC3 (high cell-membrane Met) or MIA PaCa-2 (low cell-membrane Met). Primary endpoints were tumor response and overall survival. Results: Flow cytometry and cell-surface biotinylation studies showed that cell-membrane Met was significantly more abundant in BxPC3, Capan2, and Suit2 when compared with MIA PaCa-2 pancreatic tumor cells. Crizotinib and cabozantinib, TKIs with known activity against Met and other kinases, decreased PDAC cell line viability in vitro. The TKI with the lowest IC50 for Met, capmatinib, had no activity in PDAC lines. No additive effect was detected on cell viability when Met-inhibition was combined with MEK1/2 inhibition. We observed selective tumor uptake of [89Zr]Zr-DFO-onartuzumab in mice subcutaneously and orthotopically engrafted with PDAC lines containing high cell-surface levels of Met (BxPC3, Capan2, Suit2), but not in mice engrafted with low cell-surface levels of Met (MIA PaCa-2). Significant tumor growth delay and overall survival benefit were observed in both BxPC3 and MIA PaCa-2 engrafted animals treated with RLT when compared to controls, however, the benefit was more pronounced and more durable in the BxPC3 engrafted animals treated with [177Lu]Lu-DTPA-onartuzumab RLT. Conclusions: Our findings demonstrate that while over-expression of Met is not predictive of Met-directed TKI response, immunoPET can detect Met over-expression in vivo and predicts for therapeutic response to Met-selective RLT. This phenomenon can be exploited for other Met-overexpressing tumor types specifically, and to any differentially overexpressed surface molecule more broadly.


Assuntos
Carcinoma Ductal Pancreático/radioterapia , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pancreáticas/radioterapia , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Nus , Tomografia por Emissão de Pósitrons , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-met/metabolismo , Radioimunoterapia
7.
Cancer Biother Radiopharm ; 34(8): 498-503, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31424293

RESUMO

Background: Glypican 3 (GPC3), a plasma membrane heparan sulfate proteoglycan, is overexpressed on human hepatocellular carcinoma and may represent a promising biomarker. Several studies have reported peptides that selectively bind to GPC3 and could serve as scaffolds for imaging or therapeutic agents. Materials and Methods: We synthesized variants of two previously published peptides, DHLASLWWGTEL (TJ12P1) and RLNVGGTYFLTTRQ (L5), and evaluated their in vitro binding performance in paired isogenic cell lines, A431(GPC3-) and A431-GPC3+ (G1), as well as the liver cancer cell line HepG2. Using flow cytometry and biolayer interferometry (BLI), we compared the binding of the TJ12P1 and L5 peptide variants to the binding of corresponding scrambled peptides having the same amino acid composition, but in random sequence. Results: While both peptides bound to G1 and HepG2, they also bound to A431. The corresponding scrambled peptides demonstrated greater apparent binding to both G1 and A431 than their specific counterparts. BLI confirmed lack of binding at 0.5-1 µM for both peptides. Conclusions: We conclude that neither TJ12P1 nor L5 variant demonstrates selectivity for GPC3 at concentrations near the reported KD, and that the peptides lack potency or are nonspecific, making them inadequate for use as imaging agents.


Assuntos
Carcinoma Hepatocelular/diagnóstico , Glipicanas/metabolismo , Neoplasias Hepáticas/diagnóstico , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/normas , Carcinoma Hepatocelular/metabolismo , Humanos , Técnicas In Vitro , Neoplasias Hepáticas/metabolismo , Células Tumorais Cultivadas
8.
Org Lett ; 16(24): 6326-9, 2014 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-25467653

RESUMO

A library containing 10 air-stable Ni(II)X(Aryl)(PCy3)2 σ-complexes as precatalysts (X = Cl, Br, OTs, OMs, aryl = 1-naphthyl, 2-naphthyl; X = Cl, 1-acenaphthenyl, 1-(2-methoxynaphthyl), 9-phenanthrenyl, 9-anthracyl) was synthesized and demonstrated to quantitatively cross-couple 2-methoxyphenyl dimethylsulfamate with methyl 4-(5,5-dimethyl-1,3,2-dioxaborinane-2-yl)benzoate at 23 °C in dry THF in the presence of K3PO4(H2O)3.2 in less than 60 min. Lower or higher amounts of H2O in K3PO4 and as received THF mediate the same transformation in a maximum three times longer reaction time.

9.
J Org Chem ; 77(14): 5956-64, 2012 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-22712768

RESUMO

The efficiency of arylboron-based nucleophiles, boronic acid, potassium trifluoroborate, neopentylglycolboronate, and pinacol boronate in nickel-catalyzed Suzuki-Miyaura cross-coupling reactions with the two C-O electrophiles, mesylates, and sulfamates was compared. Arylboronic acid is the most reactive and most atom-economic of the four boron species studied. Arylpotassium trifluoroborate cross-couples efficiently only in the presence of water. In the absence of water, aryl neopentylglycolboronate is more efficient, less expensive, and more atom-economic than aryl pinacolboronate.


Assuntos
Derivados de Benzeno/síntese química , Ácidos Borônicos/química , Mesilatos/química , Níquel/química , Compostos Organometálicos/química , Ácidos Sulfônicos/química , Derivados de Benzeno/química , Ácidos Borônicos/síntese química , Catálise , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...